Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 110(13): 2057-2062, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671759

RESUMO

Scientists around the globe are joining the race to achieve engineering feats to read, write, modulate, and interface with the human brain in a broadening continuum of invasive to non-invasive ways. The expansive implications of neurotechnology for our conception of health, mind, decision-making, and behavior has raised social and ethical considerations that are inextricable from neurotechnological progress. We propose "socio-technical" challenges as a framing to integrate neuroethics into the engineering process. Intentionally aligning societal and engineering goals within this framework offers a way to maximize the positive impact of next-generation neurotechnologies on society.


Assuntos
Princípios Morais , Neurociências , Encéfalo , Humanos
2.
Cell ; 181(2): 410-423.e17, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32187527

RESUMO

Memories are believed to be encoded by sparse ensembles of neurons in the brain. However, it remains unclear whether there is functional heterogeneity within individual memory engrams, i.e., if separate neuronal subpopulations encode distinct aspects of the memory and drive memory expression differently. Here, we show that contextual fear memory engrams in the mouse dentate gyrus contain functionally distinct neuronal ensembles, genetically defined by the Fos- or Npas4-dependent transcriptional pathways. The Fos-dependent ensemble promotes memory generalization and receives enhanced excitatory synaptic inputs from the medial entorhinal cortex, which we find itself also mediates generalization. The Npas4-dependent ensemble promotes memory discrimination and receives enhanced inhibitory drive from local cholecystokinin-expressing interneurons, the activity of which is required for discrimination. Our study provides causal evidence for functional heterogeneity within the memory engram and reveals synaptic and circuit mechanisms used by each ensemble to regulate the memory discrimination-generalization balance.


Assuntos
Medo/fisiologia , Memória/fisiologia , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/fisiologia , Giro Denteado/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
Prog Neurobiol ; 177: 1-14, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30878723

RESUMO

The field of neuromodulation is developing rapidly. Current techniques, however, are still limited as they i) either depend on permanent implants, ii) require invasive procedures, iii) are not cell-type specific, iv) involve slow pharmacokinetics or v) have a restricted penetration depth making it difficult to stimulate regions deep within the brain. Refinements into the different fields of neuromodulation are thus needed. In this review, we will provide background information on the different techniques of neuromodulation discussing their latest refinements and future potentials including the implementation of nanoparticles (NPs). In particular we will highlight the usage of magnetic nanoparticles (MNPs) as transducers in advanced neuromodulation. When exposed to an alternating magnetic field (AMF), certain MNPs can generate heat through hysteresis. This MNP heating has been promising in the field of cancer therapy and has recently been introduced as a method for remote and wireless neuromodulation. This indicates that MNPs may aid in the exploration of brain functions via neuromodulation and may eventually be applied for treatment of neuropsychiatric disorders. We will address the materials chemistry of MNPs, their biomedical applications, their delivery into the brain, their mechanisms of stimulation with emphasis on MNP heating and their remote control in living tissue. The final section compares and discusses the parameters used for MNP heating in brain cancer treatment and neuromodulation. Concluding, using MNPs for nanomaterial-mediated neuromodulation seem promising in a variety of techniques and could be applied for different neuropsychiatric disorders when more extensively investigated.


Assuntos
Encéfalo , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/tendências , Nanopartículas de Magnetita/uso terapêutico , Animais , Humanos
4.
ACS Nano ; 10(4): 4020-30, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27089024

RESUMO

The tools for optically imaging cellular potassium concentrations in real-time are currently limited to a small set of molecular indicator dyes. Quantum dot-based nanosensors are more photostable and tunable than organic indicators, but previous designs have fallen short in size, sensitivity, and selectivity. Here, we introduce a small, sensitive, and selective nanosensor for potassium measurements. A dynamic quencher modulates the fluorescence emitted by two different quantum dot species to produce a ratiometric signal. We characterized the potassium-modulated sensor properties and investigated the photonic interactions within the sensors. The quencher's protonation changes in response to potassium, which modulates its Förster radiative energy transfer rate and the corresponding interaction radii with each quantum dot species. The nanosensors respond to changes in potassium concentrations typical of the cellular environment and thus provide a promising tool for imaging potassium fluxes during biological events.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Potássio/análise , Pontos Quânticos/química , Fluorescência , Corantes Fluorescentes/análise , Células HEK293 , Humanos , Íons/química , Cinética , Microscopia Confocal , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
5.
Nano Lett ; 10(7): 2421-6, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20545311

RESUMO

The degree of interpenetration at the interface between colloidal quantum dots (QDs) and organic semiconductor molecules commonly employed in hybrid light-emitting devices (QD-LEDs) has been examined using tapping-mode atomic force microscopy. Both phase separation-driven and Contact Printing-enabled QD/semiconductor heterojunction fabrication methodologies lead to significant QD embedment in the underlying organic film with the greatest degree of QD penetration observed for QD monolayers that have been contact printed. The relative performance of QD-LEDs fabricated via three different methods using the same materials set has also been investigated.

6.
Nano Lett ; 9(7): 2532-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19514711

RESUMO

Improvements in quantum dot light-emitting device (QD-LED) performance are achieved by the choice of organic charge transporting layers, by use of different colloidal QDs for the different parts of the visible spectrum, and by utilizing a recently demonstrated robust QD deposition method. Spectrally narrow electroluminescence of our QD-LEDs is tuned over the entire visible wavelength range from lambda = 460 nm (blue) to lambda = 650 nm (deep red). By printing close-packed monolayers of different QD types inside an identical QD-LED structure, we demonstrate that different color QD-LEDs with QDs of different chemistry can be fabricated on the same substrate. We discuss mechanisms responsible for efficiency increase for green (4-fold) and orange (30%) QD-LEDs as compared to previous reports and outline challenges associated with achieving high-efficiency blue QD-LEDs.


Assuntos
Medições Luminescentes , Pontos Quânticos , Cádmio/química , Eletroquímica , Luz , Medições Luminescentes/instrumentação , Microscopia de Força Atômica , Selênio/química , Enxofre/química , Propriedades de Superfície , Zinco/química
7.
Nano Lett ; 8(12): 4513-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053797

RESUMO

We demonstrate a solvent-free contact printing process for deposition of patterned and unpatterned colloidal quantum dot (QD) thin films as the electroluminescent layers within hybrid organic-QD light-emitting devices (QD-LEDs). Our method benefits from the simplicity, low cost, and high throughput of solution-processing methods, while eliminating exposure of device structures to solvents. Because the charge transport layers in hybrid organic/inorganic QD-LEDs consist of solvent-sensitive organic thin films, the ability to avoid solvent exposure during device growth, as presented in this study, provides a new flexibility in choosing organic materials for improved device performance. In addition, our method allows us to fabricate both monochrome and red-green-blue patterned electroluminescent structures with 25 microm critical dimension, corresponding to 1000 ppi (pixels-per-inch) print resolution.

8.
Nano Lett ; 7(8): 2196-200, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17616230

RESUMO

We demonstrate light emitting devices (LEDs) with a broad spectral emission generated by electroluminescence from a mixed-monolayer of red, green, and blue emitting colloidal quantum dots (QDs) in a hybrid organic/inorganic structure. The colloidal QDs are reproducibly synthesized and yield high luminescence efficiency materials suitable for LED applications. Independent processing of the organic charge transport layers and the QD luminescent layer allows for precise tuning of the emission spectrum without changing the device structure, simply by changing the ratio of different color QDs in the active layer. Spectral tuning is demonstrated through fabrication of white QD-LEDs that exhibit external quantum efficiencies of 0.36% (Commission Internationale de l'Eclairage) coordinates of (0.35, 0.41) at video brightness, and color rendering index of 86 as compared to a 5500 K blackbody reference.


Assuntos
Cristalização/métodos , Eletroquímica/instrumentação , Iluminação/métodos , Medições Luminescentes/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Pontos Quânticos , Coloides/química , Cor , Eletroquímica/métodos , Luz , Iluminação/instrumentação , Medições Luminescentes/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...